176 research outputs found

    Control, Risk and Information Security Precautions

    Get PDF
    The introduction of the Internet to the business world has changed many ways of doing business. Unfortunately, the Internet has also become an arena where individuals are constantly at risk for computer viruses, spyware/adware infection, and malicious attacks designed to misuse or appropriate corporate assets. The wide-spread publicity of both cyber-attacks and ways to combat these problems, public and corporate education efforts, and prevention efforts (including corporate spending on new protections and enforcement of existing policies), suggest that it is logical for users to put precautionary practices in place. Unfortunately, they often don’t. Many individuals within organizations underestimate their vulnerability and do not follow prescribed security policies and procedures implemented within their organizations. Extant security literature heavily emphasizes automatic or programmed security measures, but does not focus strongly on the behaviors of individuals in the security setting. This paper examines two research questions: What are the effects of organizational policies and procedures on security precautions taken by individuals? What is the role that individual risk perceptions play in individual cyberprecautions choices? These questions will be addressed by theory taken from the formal control and fear of crime literatures. This theory posits that formal controls and individuals’ experiences have a strong effect on both individual perceptions of mandatory rules and individual risk perceptions. These perceptions, in turn, lead to precaution-taking behaviors. The resulting model will be tested with a field survey

    On The Effect of Giant Planets on the Scattering of Parent Bodies of Iron Meteorite from the Terrestrial Planet Region into the Asteroid Belt: A Concept Study

    Full text link
    In their model for the origin of the parent bodies of iron meteorites, Bottke et al proposed differentiated planetesimals that were formed in the region of 1-2 AU during the first 1.5 Myr, as the parent bodies, and suggested that these objects and their fragments were scattered into the asteroid belt as a result of interactions with planetary embryos. Although viable, this model does not include the effect of a giant planet that might have existed or been growing in the outer regions. We present the results of a concept study where we have examined the effect of a planetary body in the orbit of Jupiter on the early scattering of planetesimals from terrestrial region into the asteroid belt. We integrated the orbits of a large battery of planetesimals in a disk of planetary embryos, and studied their evolutions for different values of the mass of the planet. Results indicate that when the mass of the planet is smaller than 10 Earth-masses, its effects on the interactions among planetesimals and planetary embryos is negligible. However, when the planet mass is between 10 and 50 Earth-masses, simulations point to a transitional regime with ~50 Earth-mass being the value for which the perturbing effect of the planet can no longer be ignored. Simulations also show that further increase of the mass of the planet strongly reduces the efficiency of the scattering of planetesimals from the terrestrial planet region into the asteroid belt. We present the results of our simulations and discuss their possible implications for the time of giant planet formation.Comment: 20 pages, 7 figures, accepted for publication in Ap

    Controls in the NICU

    Get PDF
    Medication dosage errors cause too many adverse clinical events in both inpatient and outpatient settings. In this disguised and partially fictionalized teaching case a hospital administrator considers whether the skills she recently acquired in an MBA Accounting Information System class could be adapted for use in a quality improvement program related to medication errors. The case illustrates how the preparation of a system flowchart mapped to a control matrix – a technique that auditors commonly use to support analysis of the adequacy of controls over financial processes – can be adapted to support analysis of clinical process controls and controls over related information. The case offers an opportunity for students to discuss some of the benefits and limitations of this technique, and possible extensions of it to non-financial processes in health care and elsewhere

    Collapse of a molecular cloud core to stellar densities: the radiative impact of stellar core formation on the circumstellar disc

    Full text link
    We present results from the first three-dimensional radiation hydrodynamical calculations to follow the collapse of a molecular cloud core beyond the formation of the stellar core. We find the energy released by the formation of the stellar core, within the optically-thick first hydrostatic core, is comparable to the binding energy of the disc-like first core. This heats the inner regions of the disc, drives a shock wave through the disc, dramatically decreases the accretion rate on to the stellar core, and launches a temporary bipolar outflow perpendicular to the rotation axis that travels in excess of 50 AU into the infalling envelope. This outburst may assist the young protostar in launching a conventional magnetic jet. Furthermore, if these events are cyclic, they may provide a mechanism for intense bursts of accretion separated by long periods of relatively quiescent accretion which can potentially solve both the protostellar luminosity problem and the apparent age spread of stars in young clusters. Such outbursts may also provide a formation mechanism for the chondrules found in meteorites, with the outflow transporting them to large distances in the circumstellar disc.Comment: Accepted by MNRAS Letters. 6 pages, 4 figures. Animations can be found at http://www.astro.ex.ac.uk/people/mbate/Animations/Stellar

    Postincarceration fatal overdoses after implementing medications for addiction treatment in a statewide correctional system

    Get PDF
    As the epidemic of opioid use in the United States continues to shift fromprescription opioids to illicit drugs, more people living with opioid use disorder are encountering the criminal justice system. Most US correctional facilities do not continue or initiate medications for addiction treatment (MAT). This is especially unfortunate given the higher rates of opioid overdose immediately after release from incarceration

    Prediction of the export and fate of global ocean net primary production : the EXPORTS Science Plan

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 22, doi:10.3389/fmars.2016.00022.Ocean ecosystems play a critical role in the Earth's carbon cycle and the quantification of their impacts for both present conditions and for predictions into the future remains one of the greatest challenges in oceanography. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) Science Plan is to develop a predictive understanding of the export and fate of global ocean net primary production (NPP) and its implications for present and future climates. The achievement of this goal requires a quantification of the mechanisms that control the export of carbon from the euphotic zone as well as its fate in the underlying “twilight zone” where some fraction of exported carbon will be sequestered in the ocean's interior on time scales of months to millennia. Here we present a measurement/synthesis/modeling framework aimed at quantifying the fates of upper ocean NPP and its impacts on the global carbon cycle based upon the EXPORTS Science Plan. The proposed approach will diagnose relationships among the ecological, biogeochemical, and physical oceanographic processes that control carbon cycling across a range of ecosystem and carbon cycling states leading to advances in satellite diagnostic and numerical prognostic models. To collect these data, a combination of ship and robotic field sampling, satellite remote sensing, and numerical modeling is proposed which enables the sampling of the many pathways of NPP export and fates. This coordinated, process-oriented approach has the potential to foster new insights on ocean carbon cycling that maximizes its societal relevance through the achievement of research goals of many international research agencies and will be a key step toward our understanding of the Earth as an integrated system.The development of the EXPORTS Science Plan was supported by NASA Ocean Biology and Biogeochemistry program (award NNX13AC35G)

    Satellite-detected fluorescence reveals global physiology of ocean phytoplankton

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 779-794, doi: 10.5194/bg-6-779-2009Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.This work was supported by grants from the NASA Ocean Biology and Biogeochemistry Program and the NSF Biological Oceanography Program
    • …
    corecore